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Abstract. We present an analysis of the nonequilibrium thermodynamics and, mainly, a
response function theory for the study of optical properties in ultrafast-spectroscopy pump–probe
experiments. These experiments give rise to the formation of a photoinjected plasma in
semiconductors in far-from-equilibrium conditions. The dissipative processes that evolve in this
medium greatly influence optical and transport properties. The theory is centred on the application
to the study of the phenomenon of modulated changes in the time-resolved reflectivity spectrum.
In particular, we show that this phenomenon consists in the coupled effect of coherent-LO-phonon
and carrier-charge-density motions, which are driven through the action of the coherent photons of
the laser electromagnetic radiation. In the given conditions the modulation effect decays in time
and has associated a frequency close to the zone-centre upper LO phonon–optical plasma hybrid
mode, as experimentally observed.

1. Introduction

Pump–probe experiments in the field of ultrafast laser spectroscopy, devoted to the study of the
nonequilibrium photoinjected plasma in semiconductors, have been extensively used in recent
decades, and have been accompanied by a number of theoretical analyses [1]. It needs to be
stressed that in this type of experiment the system is, as a general rule, driven far away from
equilibrium. Hence, while the measurements are performed with, say, femto- or pico-second
time resolution, the macroscopic (thermodynamic) state of the system is rapidly evolving from
the initial state of preparation in far-from-equilibrium conditions (produced by the action of the
pumping source). Consequently, while the experiment is carried on (resorting to the probing
instrumentation) ultrafast relaxation (dissipative) processes develop in the system having
relaxation times of the order of picoseconds to tens or hundreds of picoseconds. This implies
the quite relevant point that to determine the response function of the system (a time-dependent
one because it depends on the macroscopic nonequilibrium state of the system while the time-
resolved measurement is performed), it is necessary to also determine the time evolution of
such a, we stress, nonequilibrium time-dependent thermodynamic state of the system. This
implies the fact that a theoretical formalism powerful enough to deal with these situations
is necessary. One that properly provides a complete unified and powerful theory, apparently
able to cover a large section of experimental situations, is a far-reaching generalization of the
Gibbs–Boltzmann approach in the form of a nonequilibrium statistical ensemble formalism.
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This is the so-called nonequilibrium statistical operator method (NESOM; see for example
[2–8]). The formalism has been applied to the study of ultrafast relaxation phenomena in the
photoinjected plasma in semiconductors, either in the case of transport properties or as well
for optical properties [9, 10].

We present in this paper an analysis in depth of this particular time-resolved optical
response of the highly excited plasma in semiconductors (hereafter HEPS for short) within the
framework of the above formalism. HEPS provides an excellent testing ground for concepts
and methods in the field of statistical thermodynamics and mechanics of many-body systems
arbitrarily away from equilibrium (some applications in semiconductor physics are listed in
[10]).

The NESOM-based response function theory [8] is applied to the study of ultrafast optical
properties in the photoinjected plasma in semiconductors. We obtain the frequency- and
wavenumber-dependent dielectric function in arbitrary nonequilibrium conditions, a quantity
which contains all the information related to the optical properties of the system (as known,
it provides the absorption coefficient, the reflectivity coefficient, the Raman scattering cross
section etc). Moreover, we explicitly apply the results to the study of a particular type of
experiment, namely the time-resolved reflectivity changes in GaAs and other materials [11, 12]
where signal changes in the reflectivity, �R/R, of the order of 10−7 are detected, and a distinct
oscillation of the signal in real time is observed. Such a phenomenon has been attributed to
the generation of coherent lattice vibrations, and several theoretical approaches have been
reported so far [13–16]. A clear description, on phenomenological bases, which captures the
essential physics of the problem, is reported in [14]. A microscopic approach is attempted by
the authors of [15], which we show fails to provide a proper description and arrives at faulty
conclusions.

2. Reflectivity in pump–probe experiments

Let us consider a direct-gap polar semiconductor in a pump–probe experiment. We recall that
the exciting intense laser pulse produces the so-called highly excited plasma in semiconductors,
namely, electron–hole pairs on the metallic side of the Mott transition (that is, they are itinerant
carriers, and we recall that this requires concentrations of these photoinjected quasi-particles
of the order of 1016 cm−3 and up), which compose a two-component Fermi fluid, moving in
the lattice background. It constitutes a highly nonequilibrated system where the photoexcited
carriers rapidly redistribute their energy in excess of equilibrium via, mainly, the strong long-
range Coulomb interaction in a pico- to subpicosecond scale, followed by the transfer of
energy to the phonon field (predominantly to the optical phonons, and preferentially to the
LO phonons via Fröhlich interaction), and finally to the external thermal reservoir. Along the
process the carrier density diminishes in recombination processes (nanosecond time scale) and
through diffusion out of the active volume of the sample (ten picosecond time scale). Detailed
descriptions of the processes are given elsewhere [10, 18].

This follows as a consequence of the action of the pumping laser light, with the macroscopic
nonequilibrium thermodynamic state of the HEPS to be treated, as already noticed in the
introduction, within the scope of the statistical thermodynamics based on NESOM. On the
other hand, a probe interacting weakly with the HEPS is used to obtain an optical response,
the reflectivity of the incoming laser photons with frequency ω and wavevector Q in the
case under consideration. From the theoretical point of view, such measurement is to be
analysed in terms of the all important and inevitable use of correlation functions in response
function theory [19]. In the present case of a pump–probe experiment we need to resort to
a theory of such a type but properly adjusted to deal with a system whose macroscopic state
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is in nonequilibrium conditions and evolving in time as a result of the pumping dissipative
processes that are developing while the sample is probed. Therefore, the response function
theory for nonequilibrium systems needs to be coupled to the kinetic theory that describes
the evolution of the nonequilibrium state of the system [5–8, 17]. Moreover, as in the case
of an initial preparation in equilibrium conditions, the correlation functions that the theory
introduces can be alternatively calculated in terms of an appropriate theory of nonequilibrium
thermodynamic Green functions [8, 20]. We resort here to such a theory for the study of the
optical properties in HEPS, and, in particular, we consider the case of reflectivity.

The reflectivity R(ω,Q | t), where t is the time at which a measurement is performed
in this time-resolved spectroscopy experiments, is related to the index of refraction η(ω,Q |
t) + iκ(ω,Q | t) through the well known expression

R(ω,Q | t) = |η(ω,Q | t) − 1|2 + |κ(ω,Q | t)|2
|η(ω,Q | t) + 1|2 + |κ(ω,Q | t)|2 (1)

and the refraction index is related to the time-evolving frequency- and wavenumber-dependent
dielectric function by

ε(ω,Q | t) = ε′(ω,Q | t) + iε′′(ω,Q | t) = [η(ω,Q | t) + iκ(ω,Q | t)]2. (2)

We stress that the explicit dependence on time is of course the result of the fact that the
macroscopic state of the non-equilibrated plasma is evolving in time as the experiment is
performed.

Therefore it is our task to calculate this dielectric function in the nonequilibrium state of
the HEPS. First, we note that according to Maxwell equations in material media [21] (that is,
Maxwell equations now averaged over the nonequilibrium statistical ensemble) we have that

ε−1(ω,Q | t) − 1 = ñ(ω,Q | t)
r(ω,Q)

(3)

where r(ω,Q) is the amplitude of a probe charge density with frequency ω and wavevector Q,
and ñ(ω,Q | t) the induced polarization charge density of carriers and lattice, at time t , in the
media. The latter can be calculated resorting to the response function theory for systems far
from equilibrium [8, 22] (the case is quite similar to the calculation of the time-resolved Raman
scattering cross section [23, 24]), and obtained in terms of the nonequilibrium thermodynamic
Green functions [8, 22].

But, the expression we obtain is, as already noticed, dependent on the evolving
nonequilibrium macroscopic state of the system, a fact embedded in the expressions for the
time-dependent distribution functions of the carriers and phonon states. Therefore, they are to
be derived within the NESOM-based kinetic theory, and the first and fundamental step is the
choice of the set of variables deemed appropriate for the description of the macroscopic state of
the system. The case of HEPS has been discussed elsewhere [10, 18] and we simply notice that
a first set of variables needs to be the one composed of the carriers’ density and energy, and the
phonon population functions, which in NESOM have a set of associated Lagrange parameters
that can be interpreted as a reciprocal quasitemperature and quasichemical potentials of carriers,
and a reciprocal quasitemperature of phonons per mode [10, 18, 25]. But in the situation we
are considering we need to add, on the basis of the information provided by the experiment,
the amplitudes of the LO–lattice vibrations and the carrier charge density; the former because
it is clearly present in the experimental data (the oscillation in the reflectivity) and the latter
because of the LO-phonon–plasma coupling (clearly present in Raman scattering experiments
[23, 24]). Consequently the chosen basic set of dynamical quantities is

{Ĥc, N̂e, N̂h, n̂
e
kp, n̂

h
kp, ν̂q, aq, a

†
q, HB} (4)
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where

Ĥc =
∑

k

[εekc
†
kck + εhkh

†
−kh−k] (5)

N̂e =
∑

k

c
†
kck N̂e =

∑
k

h
†
−kh−k (6)

n̂ekp = c
†
k+pck n̂hkp = h−k−ph

†
k (7)

ν̂q = a†
qaq (8)

where c(c†), h(h†) and a(a†) are as usual annihilation (creation) operators in electron, hole
and LO-phonon states respectively (k, p, q run over the Brillouin zone). Moreover, the
effective mass approximation is used and Coulomb interaction is dealt with in the random
phase approximation, and then εek = EG + h̄2|k|2/2me and εhk = h̄2|k|2/2mh. Finally, HB is
the Hamiltonian of the lattice vibrations different from the LO one. We write for the NESOM
Lagrange multipliers associated with the quantities of equation (4)

{βc(t),−βc(t)µe(t),−βc(t)µh(t), F
e
kp(t), F

h
kp(t), h̄ωqβq(t), ϕq(t), ϕ

∗
q(t), β0} (9)

where µe and µh are the quasichemical potentials for electrons and for holes respectively; we
write βc(t) = 1/kBT ∗

c (t) introducing the carriers’ quasitemperature T ∗
c ; βq(t) = 1/kBT ∗

q (t)

introducing the LO-phonon quasitemperature per mode (ωq is the dispersion relation)
[10, 26, 27], β0 = 1/kBT0 with T0 the temperature of the thermal reservoir. We indicate the
corresponding macrovariables, that is, those which define the nonequilibrium thermodynamic
Gibbs space as

{Ec(t), n(t), n(t), n
e
kp(t), n

h
kp(t), νq(t), 〈aq | t〉, 〈a†

q | t〉 = 〈aq | t〉∗, EB} (10)

which are the statistical average of the quantities of equation (4), that is

Ec(t) = Tr{Ĥcρε(t)} (11)

n(t) = Tr{N̂e(h)ρε(t)} (12)

etc, where ρε(t) is the nonequilibrium statistical operator (Zubarev’s approach is used
throughout) [1–7], and n(t) is the carrier density, which is equal for electrons and for holes
since they are produced in pairs in the intrinsic semiconductor. The volume of the active
region of the sample (where the laser beam is focused) is taken equal to 1 for simplicity. The
statistical operator ρε(t) is determined by the auxiliary operator ρ̄(t, 0) (sometimes called the
‘coarse-grained part’ of ρε(t)) [5–8], which in the present case is given by

ρ̄(t, 0) = exp

{
− φ(t) − βc(t)[Ĥc − µe(t)N̂e − µh(t)N̂h]

−
∑
kp

[Fe
kp(t)n̂

e
kp(t) + Fh

kp(t)n̂
h
kp(t)]

−
∑

q

[βq(t)h̄ωq ν̂q + ϕq(t)aq + ϕ∗
q(t)a

†
q] − β0HB

}
(13)

whereφ(t) ensures its normalization, playing the role of a kind of logarithm of a nonequilibrium
partition function.

The next step is to derive the equations of evolution for the basic variables that characterize
the nonequilibrium macroscopic state of the system, and from them the evolution of the
Lagrange multipliers (or intensive nonequilibrium thermodynamic variables). We resort to
the generalized nonlinear quantum kinetic theory that the NESOM provides [4–8, 17] in the
so-called second-order approximation in relaxation theory [17]. This is an approximation
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which retains only two-body collisions but with memory being neglected, consisting in the
Markovian limit of the theory [28]. A relevant point needs to be discussed here, namely the
validity of the Markovian approximation for dealing with experiments with ultrafast resolution.
This question is closely related to the choice of the basic set of basic variables: as noticed
by Zwanzig [29], to use a Markovian approximation for description of relaxation processes in
shorter and shorter times requires an ever expanding set of basic variables. The present case
of the photoinjected plasma in semiconductors was discussed in [10] and [18]. For resolution
times in the tens of femtoseconds it is necessary to introduce a complete description in terms
of single particles, that is introducing the complete set of Dirac–Landau–Wigner dynamical
operators. However when dealing with times involving hundreds of femtoseconds, as in the
case we are considering here, the internal thermalization of the carriers has occurred and the
diagonal terms of Dirac–Landau–Wigner single particle matrices (statistical averages of the
corresponding dynamical operators), which are the populations, can be expressed in a reduced
description involving the carriers’ quasitemperature and quasichemical potentials as we have
done here. The good agreement of the theory and experiment, here and in other applications,
appears to validate the argument.

Let us first consider the equations of evolution for the basic homogeneous variables Ec(t)

and n(t), namely [10]

d

dt
Ec(t) = E′

cL(t) + E′
cR(t) + E′

cph(t) + E′
cD(t) + Nc(t) (14)

d

dt
n(t) = n′

L(t) + n′
R(t) + n′

D(t) + Nn(t) (15)

where

E′
cL(t) = 2π

h̄
θ(tL − t)

∑
k

|GL|2(εek + εhk)νL[1 − f̄ h
k (t) − f̄ e

k (t)]δ(ε
e
k + εhk − h̄ωL) (16)

n′
L(t) = 2π

h̄
θ(tL − t)

∑
k

|GL|2νL[1 − f̄ h
k (t) − f̄ e

k (t)]δ(ε
e
k + εhk − h̄ωL) (17)

are source terms implying in pumping effects from the laser; GL is the matrix element of
the carrier–laser field interaction for interband transitions, ωL the photon frequency, θ is
the Heaviside step function with tL being the duration of the pumping laser pulse and νL
is the number of photons per unit volume in the laser beam, and we recall that the dipolar
approximation is used as usual (that is the photon wavenumber is taken as zero implying the
so-called vertical transitions);

E′
cR(t) = −2π

h̄

∑
kp

|GR(p)|2(εek + εhk)f̄
e
k (t)f̄

h
k−p(t)δ(ε

e
k + εhk−p − h̄ωRp) (18)

n′
R(t) = −2π

h̄

∑
kp

|GR(p)|2f̄ e
k (t)f̄

h
k−p(t)δ(ε

e
k + εhk−p − h̄ωRp) (19)

are relaxation terms associated with recombination effects, GR(p) is the matrix element of the
carrier–radiation-recombination field interaction, ωRp the corresponding photon frequencies,
and we recall that we are keeping only spontaneous recombination contributions with p being
the wavevector of the photon in the luminescent radiation;

E′
cph(t) = 2π

h̄

∑
kqa

|Ca(q)|2εak{[(νq(t) + 1)f̄ a
k+q(t)(1 − f̄ a

k (t)) − νq(t)(1 − f̄ a
k+q(t))f̄

a
k (t)]

×δ(εak+q − εak − h̄ωq) − [(νq(t) + 1)f̄ a
k (t)(1 − f̄ a

k+q(t))

−νq(t)f̄
a
k+q(t)(1 − f̄ a

k (t))]δ(ε
a
k+q − εak + h̄ωq)} (20)
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where a in the sum denotes contribution from electrons (a = e) as well as from holes (a = h).
E′
cph(t) is the rate of relaxation of the carriers’ energy towards the lattice, and C(q) the matrix

element of Fröhlich interaction given by

Ca(q) = − i

√
2π

|q| e(ε−1
∞ − ε−1

0 )1/2(h̄ωTO
q )1/2 (21)

where ωTO
q is the frequency of TO phonons and ε0 and ε∞ are the static and optical dielectric

constants;

E′
cD(t) = − Ec(t)

τcD(t)
(22)

n′
D(t) = − n(t)

τnD(t)
(23)

are terms of diffusion (out of the active volume of the sample, once we consider uniform
illumination in a half-spherical region and take into account Fick’s and Fourier’s laws for
matter and heat diffusion), where τcD and τnD are ambipolar diffusion times, and finally

Nc(t) = 1

h̄
θ(tL − t)

∑
kQ

|GL|2(εek + εhk)n
e
kQ(t)n

h∗
k−kL,Q

(t)

{
πδ(h̄,cL(k,Q)) +

1

ih̄,cL(k,Q)

}

+
∑
kQp

|GR(p)|2(εek + εhk)n
e
kQ(t)n

h∗
k−p,Q(t)

×
{
πδ(h̄,cR(k,Q,p)) +

1

ih̄,cR(k,Q,p)

}

+
∑
kqQa

|C(q)|2(εak+Q − εak)n
a
k+q,Q(t)n

a∗
kQ(t)

×
{
πδ(h̄,cph(k,Q, q)) +

1

ih̄,cph(k,Q, q)

}
+ CC (24)

and

Nn(t) = 1

h̄
θ(tL − t)

∑
kQ

|GL|2nekQ(t)n
h∗
k−kL,Q

(t)

{
πδ(h̄,cL(k,Q)) +

1

ih̄,cL(k,Q)

}

+
∑
kQp

|GR(p)|2nekQ(t)n
h∗
k−p,Q(t)

{
πδ(h̄,cR(k,Q,p)) +

1

ih̄,cR(k,Q,p)

}
+ CC

(25)

where

h̄,cL(k,Q) = εek+Q + εhk+Q−kL
− h̄ωL (26a)

h̄,cR(k,Q,p) = εek+Q + εhk+Q−p − h̄ωRp (26b)

h̄,cph(k,Q, q) = εak+Q+q − εak+Q − h̄ωq. (26c)

It can be noticed that the collision operators of equations (16) to (20) can be identified with the
golden rule of quantum mechanics averaged over the nonequilibrium ensemble at each time t .
In these equations are present the populations

νq = Tr{ν̂qρ(t, 0)} = [exp{βq(t)h̄ωq} − 1]−1 − |〈aq | t〉|2 (27a)

f̄ e
k (t) = Tr{c†

kckρ̄(t, 0)} f̄ h
k (t) = Tr{h†

−kh−kρ̄(t, 0)} (27b)

with ρ̄ being the auxiliary operator of equation (13). The terms N are additional contributions
associated with the plasma wave oscillations; other contributions have cancelled out, including
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those containing the amplitudes of the coherent phonons. Furthermore, we call attention to
the fact the contributions in equations (16) and (17) can be rewritten as

E′
cL(t) = α(ωL)IL n′

L(t) = α(ωL)IL/h̄ωL (28)

where α is the one-photon absorption coefficient at the frequency ωL of the laser photons, and
IL is the power intensity of the laser beam.

The equation of evolution for the phonon populations is

d

dt
νq(t) = J (1)

q (t) + J (2)
q (t) (29)

where

J (1)
q (t) = − 1

ih̄

∑
ka

(Ca(q)n
a
kq〈aq | t〉 − C∗

a (q)n
a∗
kq〈aq | t〉∗) (30)

and

J (2)
q (t) = 2π

h̄

∑
ka

|Ca(q)|2[(νq(t) + 1)f̄ a
k+q(t)(1 − f̄ a

k (t)) − νq(t)(1 − f̄ a
k+q(t))f̄

a
k (t)]

×δ(εak+q − εak − h̄ωq). (31)

In equation (31) J (2)
q (t) is the collision operator in the Markovian approach to the NESOM

kinetic theory, which in this particular case corresponds to the golden rule averaged over the
nonequilibrium ensemble. It can be noticed that, different to the case of equations (14) and
(15), the right-hand side of equation (31) does not contain the plasma or phonon amplitudes
explicitly—they are implicitly contained in the populations as we will see below.

On the basis of equations (14), (15) and (29) we can derive equations of evolution for the
Lagrange multipliers βc(t), µe(h)(t) and βq(t). But for that purpose we need to notice first the
important information that the experimental data tell us, namely, that the modulation effect
produced by the phonons is very small (one part in 107), and also very small are the amplitudes
of the carrier charge density (plasma oscillations). Hence, from now on we keep only linear
terms in 〈aq | t〉 and nakq(t) (or ϕq(t) and Fa

kq(t)): since in the equations of evolution for the
energy, Ec(t), and density, n(t), and the phonon populations, νq(t), the contributions in the
above amplitudes are quadratic (as shown by equation (27a)) they are neglected. Hence, we
do have a closed system of equations to derive the evolution of the carriers’ quasitemperature,
the carriers’ quasichemical potential, and the hot phonons’ quasitemperature per mode (in this
case there occurs the so-called hot phonon temperature overshoot phenomenon [25, 30]). The
time evolution of the reflectivity is, of course, governed by the evolution of these quantities.

The time evolution of the carriers’ quasitemperature and concentration, as well as that of
the hot phonons’ quasitemperature per mode, have been calculated in NESOM for the case of
several experiments obtaining a very good agreement between theory and experimental data
[10]. We notice the relevant fact that the kinetics of evolution is strongly influenced by the
experimental protocol: in particular, very short exciting pulses are followed by a very rapid
variation in the evolution of the quasitemperature, while long exciting pulses imply a slower
evolution with the presence of a near plateau experimentally detected in several experiments.
Moreover, the relevance of ambipolar diffusion effects in the ten picosecond time scale and the
hot phonon temperature overshoot phenomenon are evidenced [25, 30]. In figure 1 we show
the expected evolution (after solving equations (14) and (15)) of the carriers’ quasitemperature
in the conditions of the experiment of Cho et al [11]. It can be noticed that the quasitemperature
T ∗
c (t) rapidly decreases from its initial value of nearly 5800 K to roughly 800 K two picoseconds

after the end of the exciting laser pulse.
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After having taken account of the equations for the homogeneous variables, we consider
the equations of evolution for the phonon amplitudes and carriers’ charge-density amplitude,
which are

∂

∂t
〈aq | t〉 + iωq〈aq | t〉 = 1

h̄
Ca(q)n(q | t) − 1

τq

〈aq | t〉 (32)

and
∂

∂t
nakq(t) − iωa

kqn
a
kq(t)=− i

h̄
[f̄ a

k+q(t) − f̄ a
k (t)]{2V (q)n(q | t) − Ca(q)[〈aq | t〉 − 〈a†

−q | t〉]

−δq,Qθ(tL − t)2a
L(k,Q)[〈bQ | t〉 − 〈b†

−Q | t〉]} − 1

τ akq(t)
nakq(t) (33)

where Q is the wavevector of the photons in the laser beam; the last term on the right-hand
side of equation (32) accounts for the delay of the phonon amplitude through relaxation to
the thermal bath; similarly, the last term on the right-hand side of equation (33) accounts for
the decay of the variable involving Landau damping and relaxation to the lattice (the detailed
structure of the two relaxation times in both equations is not necessary to be made explicit for
the purpose of this communication). The second term on the left of equation (32) arises out of
the term J (0) in the kinetic equations, while the first term on the right of equation (32) comes
from J (1) and the carrier–phonon interaction [5, 8, 17]. In equation (33) the second term on
the left is also originated in J (0), while the first three terms on the right are of the type J (1),
arising out of Coulomb interaction with matrix elementV (Q); Fröhlich interaction with matrix
element Ca(q); the interaction for intraband transitions (with matrix element 2a

L(k,Q)) of
each type of carrier with the laser electromagnetic field, and this term—arising out of J (1)—
accounts for the force exerted by the electric field of the laser, as shown below. Moreover,
h̄ωa

kq = εak+q − εak; b (b†) are annihilation (creation) operator for photons in the laser radiation
field and

n(q | t) =
∑

k

(nekq(t) + nhkq(t)) (34)

is (in units of −e) the carrier charge density Fourier amplitude (in the motion of the collective
plasma wave).

We can notice that according to equation (32) the phonon amplitudes are enhanced by the
presence of the source term on the right which is directly proportional to the carrier charge
density amplitude. But, of fundamental relevance is the fact that in the equation of evolution,
equation (33), the third term between curly brackets on the right, resulting from the coupling
of the carriers with the electric field of the pumping laser radiation, is null except for the
particular case when q is the photon wavevector Q. We recall, first, that in this case the
averaged amplitudes of the photon field, 〈bQ | t〉, are not null because of the property of
coherence of the laser photons, and, second, they are related to the electrical field E(Q, t) in
the laser beam by the expression [31]

E(Q, t) = (2πh̄ωLQ)
1/2i(〈bQ | t〉 − 〈b†

−Q | t〉) (35)

and we recall that the volume is taken equal to 1.
These are quite relevant results for the interpretation of the phenomenon. In summary,

the amplitudes of the coherent phonons, 〈aq | t〉, according to equation (32) are pumped by
the amplitudes (at the same wavevector q) of the charge oscillations, n(q | t). But according
to equation (33), the latter are in general very small (plasma oscillations with strong Landau
damping), except the one with wavevector Q (the one of the laser radiation field) which is
strongly pumped because of the coupling with the coherent photons in the laser electric field
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of equation (35). Therefore, the coherent phonon amplitude for wavevector Q, i.e. 〈aQ | t〉,
acquire large values, while the others are practically negligible.

For given initial conditions at, say, t = 0, equation (33) can be rewritten in the form of an
integral equation via the method of the matriçant [32], namely

nakq(t) = 4a
kq(t)n

a
kq(0) + 4a

kq(t)

∫ t

0
dt ′[4a

kq(t
′)]−1ζ akq(t

′) (36)

4a
kq(t) = exp

{ ∫ t

0
dt ′

(
iωa

kq − 1

τ akq(t
′)

)}
(37)

h̄ζ akq(t) = [f̃ a
k+q(t) − f̃ a

k (t)]

{
− 2 iV (q)n(q | t) + iCa(q)[〈aq | t〉 − 〈a†

−q | t〉]

+δq,Q

(
V

2πh̄ω

)1/2

θ(tL − t)2a
L(k,Q)E(Q, t)

}
(38)

and where the populations with a tilde over f are those of equation (27) after in the coarse-
grained distribution ρ̄ of equation (13) the inhomogeneous terms are neglected (i.e. taking
ϕq and Fkq as null); this is done, as already noticed, because those terms give contributions
quadratic in the weak inhomogeneities. From a direct calculation we obtain that

f̃ a
k (t) = [1 + exp{βc(t)(εak − µa(t))}]−1. (39)

In equation (36) the first term on the right-hand side is simply the individual quasiparticle
damped oscillation at the Bohr frequency h̄ωkq = εk+q − εk, and the second term has the
contributions associated with quantity ζ , namely, (1) collective plasma oscillation, (2) coupling
to the phonon field and (3) the coupling with the source arising out of the interaction with the
radiation field of the laser (the coherent photons). On the other hand, we can similarly rewrite
equation (32) as

〈aq | t〉 = 6q(t)〈aq | 0〉 + 6q(t)

∫ t

0
dt ′[6q(t

′)]−1
∑
a

1

h̄
Ca(q)n

a(q | t ′) (40)

where

6q(t) = exp

{
−

∫ t

0
dt ′

(
iωq +

1

τq(t ′)

)}
. (41)

In this equation (40) the first term on the right-hand side is the simple oscillation of the
amplitude with frequency ωq and decay time τq, while the second is the one associated with
the coupling with the carrier’s plasma oscillation.

After this analysis of the nonequilibrium (dissipative) state of the system, let us return to
the calculation of the reflectivity, in which expression, as given by equation (1), we introduce
the relation of the index of refraction with the complex dielectric function (cf equation (2)),
and the latter is written in terms of the Green functions of [8]. Next, we separate out from the
expression thus obtained for the reflectivity the part that involves the influence of the coherent
photons, which we call δR(t), from the rest to be called R0(t), as described in appendix A, to
obtain that

δR(ω,Q | t)
R0(ω,Q | t) = A(ω,Q | t)

∑
a

δLa(ω,Q | t) (42)

where A is a coefficient given in equation (A14), and, according to equation (A13),

δLa(ω,Q | t) =
∑
kq

Ka(ω,Q; k, q | t)nakq(t)〈aq | t〉 + CC (43)

with Ka described in appendix A.
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Inspection of equations (42) and (43) tells us that the reflectivity is modulated in time
by the term of equation (43), that is, the effect of the plasma–phonon coupling, while the
remaining time dependence—contained in the coefficient A—is the one associated with the
time evolution of the carriers’ quasitemperature and concentration. The modulating effect in
equation (42) is evidenced by equations (36) and (40). Finally, we recall the quite important
fact that the product of 〈aq | t〉 and nakq(t) in equation (43) is very small except for the particular
wavevector q = Q, that is, the wavevector of the laser radiation field, and then

δLa(ω,Q | t) �
∑

k

Ka(ω,Q; k,Q | t)nakQ(t)〈aQ | t〉 + CC. (44)

Consequently, the reflectivity is modulated by both the phonon and the carrier-density
amplitudes, with both coupled together via the dominant Fröhlich interaction. Therefore we
must expect a modulation consisting of six contributions: two arise from the coupling of LO
phonons, with frequency ωQ, and quasi-particle excitations (electrons and holes) oscillating
with Bohr’s frequency h̄ωa

kQ = εak+Q − εak � Q · k/2ma in the effective mass approximation.
Two others are the hybrid optical plasma–LO phonon excitations, with the dispersion relation
[33, 34]

ω2
±(Q) = 1

2 [ω2
Q + ω2

pl(Q)] ± [ 1
4 (ω

2
Q + ω2

pl(Q))2 − ω2
Qω

2
pl(Q)]2 (45)

where ωpl(Q) is the optical plasmon dispersion relation

ωpl(Q) = ωpl + 3
2v

2
th|Q|2 (46)

in the semiclassical limit, ω2
pl = 4πne2/ε0mx , mx is the excitonic mass (m−1

x = m−1
e + m−1

h )
and vth is the thermal velocity given by mxv

2
th = kBT

∗
c . Finally, the other two are the hybrid

acoustical plasma–LO phonon excitations, similar to that of equation (45), but where the
acoustical plasma dispersion relation ωpl,A(Q) = sA|Q| now enters, with sA being the group
velocity of these plasma waves.

We proceed in the next section to an analysis of this result for the particular case of the
experiment of Cho et al in [11].

3. Comparison with experiment

To compare with the experimental results reported in [11], we introduce in equation (44) the
results of equations (36) and (40), to obtain

δLa(ω,Q | t) =
∑

k

Ka(ω,Q; k,Q)4a
kQ(t)

{
nakQ(0) +

∫ t

0
dt ′[4a

kQ(t
′)]−1ξakQ(t

′)
}
6Q(t)

×
{
〈aQ | 0〉 +

∫ t

0
dt ′[6Q(t

′)]−1
∑
a

1

h̄
Ca(Q)nakQ(t

′)
}

(47)

which demonstrates the existence of a multiple modulation of the reflectivity coefficient. As
already noticed this is a combination of all six possible coupled LO phonon and carriers’
oscillations, and then the modulation of the reflectivity coefficient is of the form

δR(t)

R0(t)
�

∑
ka

B(k,Q | t) exp{−i(ωQ + ωa
kQ)t − (γQ(t) + γkQ(t))} + CC

+O+(Q | t) exp{−iω+(Q)t − γ+(Q | t)} + CC + O−(Q | t)
× exp{−iω−(Q)t − γ−(Q | t)} + CC + A+(Q | t)
× exp{−iωA+(Q)t − γA+(Q | t)} + CC + A−(Q | t)
× exp{−iωA−(Q)t − γA−(Q | t)} + CC (48)
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Figure 1. Calculated evolution of the carriers’ quasitemperature in the conditions of the experiment
by Cho et al in [11].

where B, O and A are amplitudes whose detailed expressions are not necessary to make
explicit for our purposes here, but we recall that their dependence on time (and then that of
R0(t) and δR(t)) arises out of the evolution in time of the carriers’ quasitemperature and of the
concentration. However, in the subpicosecond scale used in the measurements the carriers’
concentration is nearly constant, but the quasitemperature, which has an initial value of roughly
5800 K because of the very short and intense exciting pulse, has during the measurement of
the modulation phenomenon a rapid decrease, and in the given interval during which the
measurements are performed, it roughly varies in the interval between 4900 K and 800 K, as
shown in figure 1. Quantities γ (t), given by

γkQ(t) =
∫ t

0
dt ′τ−1

kQ(t
′) (49)

etc, can be approximated on average by the usual form t/τ (t) giving rise to six instantaneous
relaxation times, one for each type of excitation.

In the conditions of the experiment of [11] we have that, first, τA+ and τA− are very small
as a result of the fact that the acoustic plasma oscillations are embedded in the quasiparticle
continuum and very rapidly die down. Moreover, in the given conditions (n � 6.5×1017 cm−3

and for the expected carrier quasitemperature) coupling to optical plasma waves is much more
intense than to single quasiparticles, a result of the fact that 22

DH |Q|2 is much smaller than
one, where 2DH is the Debye–Hückel screening length [35].

Finally, in the given conditions the lifetime of the upper hybrid (optical plasmon–LO
phonon) mode L+ is much larger than the one of the lower hybrid mode L−. This is a result
of the fact that the L+ mode at the given density n is predominantly of the longitudinal-
optical vibration type, and then its lifetime is of the order of picoseconds while the L−
mode is predominantly a plasma oscillation, with lifetime of the order of femtoseconds
[24, 34]. Consequently, the modulation of the reflectivity coefficient occurs in terms of
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Figure 2. Reproduction of the time-resolved reflectivity changes in GaAs, as reported by Cho et al
in [11].

the frequency ω+(Q) which is 8.85 THz for a concentration of photoinjected carriers of
roughly 6.5 × 1017 cm−3, in coincidence within the experimental error with the observed
one of 8.8 ± 0.15 THz. The observed modulation, see figure 2, has a decay time of roughly
0.79 ± 0.03 ps. It can be noticed that the expected value of τ+ should nearly coincide with
the one of the LO phonon near the zone centre, that is, of the order of five to ten picoseconds
[36, 37]. This is roughly five times the observed one, and the explanation for this very rapid
apparent decay resides in the effect of the variation in time of the carriers’ quasitemperature
during the interval when the measurement is performed, as shown in appendix B. In figure 3,
leaving as an adjustable parameter only the amplitude—which we fix, fitting the maximum
value with that of one experimental point, is shown the calculated modulation effect which
is compared with the experimental result (we have only placed the positions of maxima and
minima of the amplitude taken from the experimental data).

In that way this demonstrates the reason for the presence of the observed modulating
phenomenon in the reflectivity spectra, occurring with the frequency of the near zone centre
LO phonon (more precisely the one of the upper L+ hybrid mode) with wavevector Q, the one
of the photon in the laser radiation field. The amplitude of the modulation is determined by the
amplitude of the laser-radiation-driven carrier charge density which is coupled to the optical
vibration, and then an open parameter in the theory to be fixed by the experimental data.

4. Conclusion

In summary, we have presented an analysis of the optical properties of the photoinjected
plasma in semiconductors, a far-from-equilibrium dissipative system. The optical response
of such a system needs then to be dealt with in the framework of a theory which can account
for the time evolution of the nonequilibrium macroscopic state of the system while it is
probed in pump–probe experiments. We have derived such a theory within the scope of a
nonequilibrium statistical ensemble formalism, namely, the nonequilibrium statistical operator
method and Zubarev’s approach was used. The frequency- and wavenumber-dependent
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Figure 3. The theoretically evaluated modulation of the time-resolved reflectivity in the conditions
of [11], compared with the experimental data. For simplicity we have drawn only the positions of
the maxima and minima of the figure in the inset of figure 2.

dielectric function, which also depends on time in these time-resolved experiments as the
nonequilibrium dissipative state of the system is evolving, was calculated. We recall that this
quantity provides for all the optical properties, like absorption and reflectivity coefficients,
Raman-scattering cross section etc, and we have specifically used these results to analyse the
reflectivity, more precisely, a detailed study of an interesting phenomenon recently observed,
consisting in the presence of a distinct oscillation of the signal in real time.

Such a phenomenon was attributed to the generation of coherent lattice vibrations, and a
clear description on phenomenological bases given in [14] captures the essential physics of
the problem. We have presented here a derivation at the microscopic mechanical–statistical
level—within the theory referred to above—showing the origin of the phenomenon, which in
fact arises out of the coupling of coherent phonon optical lattice vibrations with the carriers’
charge density waves, the latter amplified by the coupling of the carriers with the pumping-
laser electromagnetic radiation (at the wavenumber of the corresponding photons). Moreover,
as shown, of all the possible contributions to the phenomenon, the leading one is that resulting
from the oscillation of the so-called upper-branch hybrid mode of longitudinal optical phonons
and the optical plasmons.

We notice that an earlier attempt of Kuznetzov and Stanton [5] presents a partial analysis
however arriving at faulty results. The conclusion of those authors that the strictly zone-centre
phonons are the ones associated with the phenomenon cannot be sustained on physical grounds.
On the one hand any sample in a laboratory is finite in size, and then vibrations with an infinite
wavelength cannot be excited (the smallest wavenumber contributing to the lattice vibrations
should be of the order of π/L, where L is the shortest dimension of the sample). Moreover,
even if we disregard this point (considering the idealized thermodynamic limit, thus ignoring
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boundary conditions), the strictly zero-wavenumber mode has null density of states and null
group velocity (corresponding to a van Hove singularity), with this zone-centre mode being a
type of Goldstone mode (which is associated with a symmetry-breaking process): its excitation,
in this case, would correspond to production of a finite uniform-in-space polarization (for these
optical modes associated with the collective movement in the relative coordinate of the ions;
in the case of the acoustical modes—associated with the collective movement in the centre of
mass coordinate of the ion pairs in a cell—it corresponds to a shift of the centre of mass of the
whole sample) [38]. To circumvent this point the argument was raised that it would follow a
Bose–Einstein condensation, which admits no justification. We call the attention to the fact
that, for the authors of [15] it is fundamental that the excited mode is the one with strictly zero
wavenumber, for the amplitude of the modulation to depend on the population of the electron
states. Again, some misrepresentation occurs here: the theory is based on the coupling of the
vibrational displacement (and polarization charge) with the plasma wave amplitude (carrier
charge density wave). The latter is expressed in terms of the carriers’ single particle Dirac–
Landau–Wigner density matrices, and their limits of infinite wavelength are not the carriers’
distribution functions. The latter describe the population in single particle states and do not
represent any charge density amplitude [39]. In contrast, as shown in the previous sections the
amplitude of the modulation is governed by the carriers’ charge density amplitude coupled to
the strong pumping electromagnetic laser coherent field.
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Appendix A. The oscillation in reflectivity

Let us introduce

ε(ω,Q | t) = ε0(ω,Q | t) + δε(ω,Q | t) (A1)

where ε0 is the contribution in the absence of the coherent-phonon amplitudes, and δε the
contribution due to the latter, which is given by

δε(ω,Q | t) = V (Q)δG(ω,Q | t) = V (Q)[δGcc + δGci + δGic + δGii] (A2)

where δG is a result of the presence of the term δf in the carrier populations arising out of the
coherence of the LO phonons as given by equation (C6). Then, separating the real, ε1, and
imaginary, ε2, parts of the dielectric function (ε = ε1 + iε2 and G = G1 + iG2, and we have
omitted the argument (ω,Q | t) in the partial contributions to δG, as we also do for several
other quantities below) we find that

δε1 = −V (Q)[ε0
1δG1 − ε0

2δG2] (A3a)

δε2 = −V (Q)[ε0
1δG2 − ε0

2δG1]. (A3b)

Moreover, introducing

η + iκ = ε1/2 ε0 = |ε0|eiα0 η = η0 + δη κ = κ0 + δκ (A4)
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etc in equations (1)–(3), together with equations (A3), after some algebra we arrive at the result
that
�R(ω,Q | t)
R(ω,Q | t) � V (Q)[B1(ω,Q | t)δG1(ω,Q | t) + B2(ω,Q | t)δG2(ω,Q | t)] (A5)

where

B1(ω,Q | t) = b1(ε
0
1 cosα0 + ε0

2 sin α0) − b2(ε
0
1 sin α0 − ε0

2 cosα0) (A6a)

B2(ω,Q | t) = b1(ε
0
1 sin α0 − ε0

2 cosα0) + b2(ε
0
1 cosα0 + ε0

2 sin α0) (A6b)

with

b1 = η0 + 1

d0
b2 = κ0

d0
(A7a)

d0 = |ε0|1/2[(η0 + 1)2 + (κ0)2] (A7b)

and we recall that tan(2α0) = ε0
2/ε

0
1. Moreover,

δG1(2)(ω,Q | t) = δGcc1(2) + δGci1(2) + δGic1(2) + δGii1(2) (A8)

where index 1 and 2 refer to the real and imaginary parts of these δG, which result in very
cumbersome expressions. However, in the experimental conditions of [11] they can be greatly
simplified once we take into account that ωkQ � ω0, ωpl � ω0 (ω0 is the dispersionless
LO-phonon frequency), and V (Q)La(ω,Q | t) � 1, where

La(ω,Q | t) =
∑

k

[f a
k (t) − f a

k+Q(t)](h̄ω − h̄ωkQ)
−1 (A9a)

2πδGcc � −
∑
a

δLa (A9b)

2πδGci � (,Q/D
0
Q)

2
∑
a

δLa (A9c)

2πδGii � 2πδGci � (,Q/D
0
Q)

2
∑
a

δLa (A9d)

where

,2
Q = ω2

Q − (ωTO
Q )2 (A10)

(D0
Q) = ω2 − ω2

0 − ,2
Q (A11)

and

δLa(ω,Q | t) =
∑

k

δf a
k+Q(t) − δf a

k (t)

h̄(ω − ωa
kQ)

(A12)

with δf given in appendix C. Using equation (C6) we obtain that

δLa(ω,Q | t) =
∑
kq

Ka(ω,Q; k, q | t)nakq(t)〈aq | t〉 (A13)

where Ka follows by comparison with equations (C6) and (C7). Finally, using equation (A13)
in equations (A9) and next replacing equations (A6), (A8) and (A9) in equation (A5), we arrive
at the result of equation (42), where then

A(ω,Q | t) = V (Q)

2π

[
1 −

(
,Q

D0
Q

)2]
B1(ω,Q | t) (A14)

δG1(ω,Q | t) = V (Q)
∑
a

δLa(ω,Q | t) (A15)

and δG2 vanishes.
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Appendix B. Decay of the modulation effect

We notice that in equation (C5) the dependence on time of the coefficient M (cf equation (C7)
et seq) arises basically from the population f of equation (C10). Hence, we can rewrite in
equation (49)

δR(t)

R0(t)
� O+(Q | t) exp{−iω+(Q)t − γ+(Q | t)} + CC (B1)

that

O+(Q | t) =
∑
ka

Ea(k,Q)β3/2
c (t) exp

{
− βc(t)

h̄2|k|2
2ma

}
(B2)

where the coefficient E is nearly time independent. To proceed further we take the exponential
out of the summation (integration) in the sense of the mean value theorem, and, moreover, we
consider only the leading contribution due to the electrons, i.e.

δR(t)

R0(t)
≈ Me(Q)β3/2

c (t) exp

{
− i

(
ωA+ − i

1

τ+(Q | t)
)
t − h̄2|k̄(t)|2

2me

βc(t)

}
(B3)

where

Me(Q) =
∑

k

Ee(k,Q) (B4)

and |k̄(t)| is the value fixed, at each time t , by the mean value theorem. Moreover, we have
written, as noted in the main text,

γ+(Q | t) = t

τ+(Q | t) (B5)

where τ , predominantly the decay of the LO phonon at mode Q, varies around 7 ps [24, 34, 37].
We recall that βc(t) = 1/kBT ∗

c (t), the evolution of the carriers’ quasitemperature is given
in figure 1, and n � 6.5 × 1017 cm−3 is practically constant in time in the given interval
when the observation and measurement was performed. We obtain a good fitting of the
experimental curve shown in the upper-right inset in figure 2 using values of |k̄(t)| ranging,
for 0.24 ps � t � 1.73 ps, from ∼7.5 × 106 cm−1 to ∼8.2 × 106 cm−1 with an intermediate
maximum of ∼9.2 × 106 cm−1, and an average of roughly 8.4 × 106 cm−1. The interesting
point can be noticed that these are values comparable with the thermal wavenumber kth(t)
defined by h̄2k2

th(t)/2me = (3/2)kBT ∗
c (t), whose average value in the given interval is roughly

7.2 × 106 cm−1. This then demonstrates that the decay of the modulation is a result of the
changing of the nonequilibrium thermodynamic state, which, we recall, is characterized, while
the time-resolved measurements are performed, by a nearly constant concentration of the
photoinjected carriers, but with a rapidly changing carrier quasitemperature, while the phonon
bath remains at nearly the reservoir temperature.

Appendix C. The carrier population functions

The calculations of the reflectivity, via the dielectric function, requires us to determine the
carrier occupation-number distributions, namely,

f a
k (t) = Tr{c†

kckρε(t)}. (C1)

This can be done using the fact that the expression of the nonequilibrium distribution ρε(t)

can be written in a series of contributions [17] involving powers of the interaction potential in
a kind of perturbational expansion, namely

ρε(t) = ρ̄(t, 0) +
∞∑
n=1

ρ(n)ε (t, 0) (C2)
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where the first contribution to this series, the only one we retain below to write the distribution
function of equation (C1) is

ρ(1)ε (t, 0) = 1

ih̄

∫ t

−∞
dt ′ eε(t

′−t)[Ĥ ′(t ′ − t)0, ρ̄(t
′, t ′ − t)0]

+
1

ih̄

9∑
j=1

∫ t

−∞
dt ′ eε(t

′−t) δρ̄(t
′, t ′ − t)0

δQj (t ′)
Tr{[Ĥ ′, P̂j ]ρ̄(t ′, 0)} (C3)

where P̂j and Qj , with j = 1, 2, . . . , represent the nine dynamical variables of equation (4)
and the macrovariables of equation (10) respectively. The lower right index zero indicates
evolution in the interaction representation. Then, in lowest order we have

f a
k (t) � Tr{c†

kckρ̄(t, 0)} + Tr{c†
kckρ

(1)
ε (t, 0)}. (C4)

Taking into account the expression for the auxiliary coarse-grained operator given by
equation (13), we find after resorting to Heims–Jaynes perturbative expansion for averages
[40] that, to lowest order in the amplitudes nkq and 〈aq〉, that is, only up to first order in these
quantities,

f a
k (t) = f̄ a

k (t) + δf a
k (t) (C5)

where f̄k is given in equation (27), and

δf a
k (t) =

∑
q

Ma
q(t)〈aq | t〉 + CC (C6)

where

Ma
q(t) = Saq (t)/[δE(t)/δF a

k (t)] (C7)

Saq (t) = 2

3h̄
Ca(q)

∑
k′

nak′q(t)

ωk′q − ωq − iε
− 2

3h̄
C∗
a (q)

∑
k′

n∗a
k′q(t)

ωk′q − ωq − iε
(C8)

δE(t)

δf a
k

= −βc(t)[ε
a
k − 3

2kBT
∗
c (t)]f̃

a
k (t) (C9)

where ε tends to +0, and we have used for f̃ a
k of equation (39) a nondegenerate-like limit,

valid in the typical experimental conditions, that is,

f̃ a
k (t) → 8π3n(t)h̄3

(2πma)3/2
β3/2
c (t) exp{−βc(t)ε

a
k}. (C10)
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[7] Zubarev D N, Morozov V G and Röpke G 1996 Statistical Mechanics of Nonequilibrium Phenomena: Basic
Concepts, Kinetic Theory vol 1 (Berlin: Akademie)
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